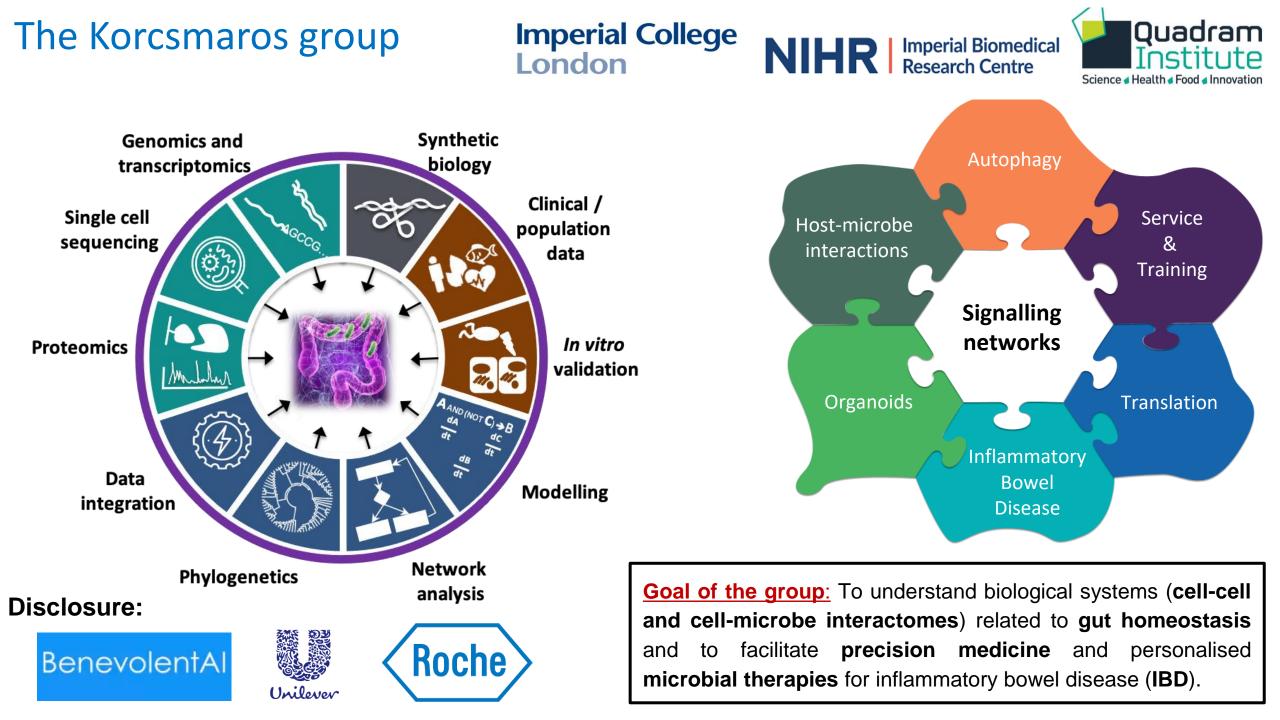


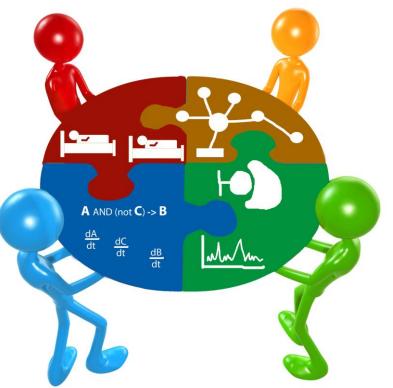
Systems biology, Systems Medicine, Big DataHow network approaches can improveIBD research and clinical outcome


TAMAS KORCSMAROS

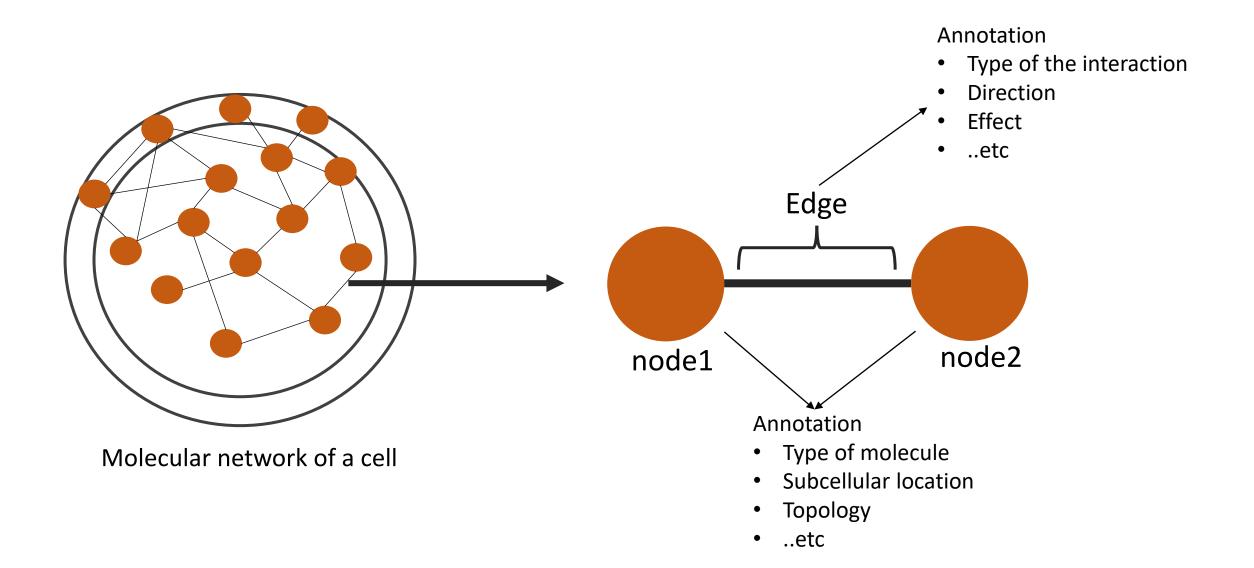
Senior Lecturer Division of Digestive Diseases

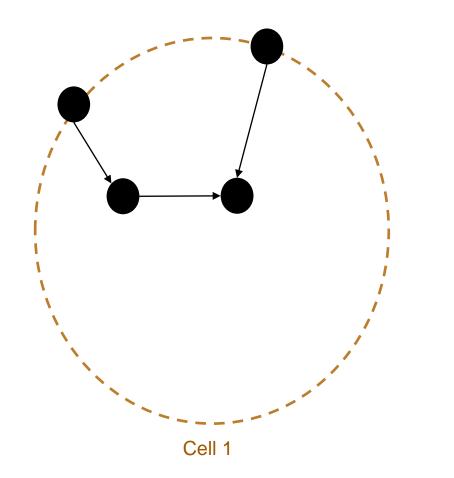
Imperial College London

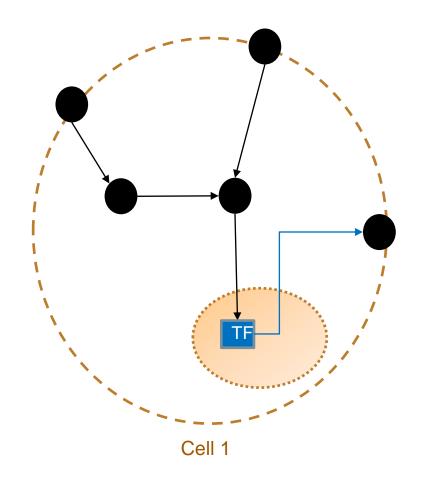
Big data in IBD



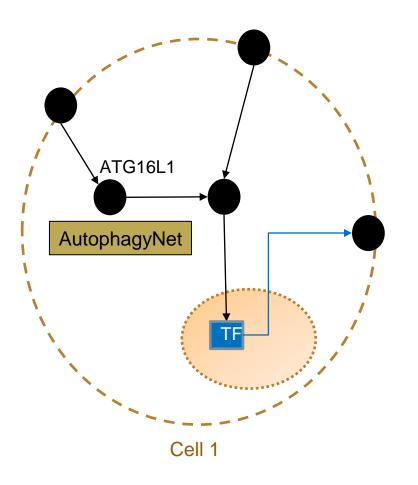
Seyed Tabib et al, Gut, 2020

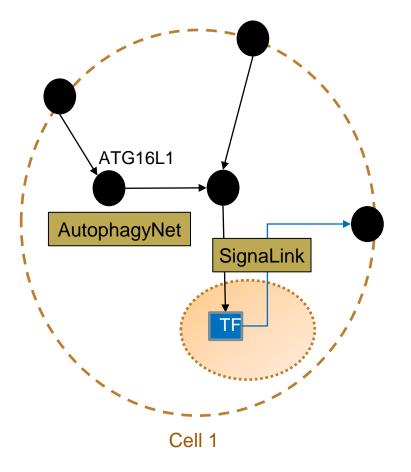

Network medicine – a promising history


- "Network medicine" (Barabasi, 2007)
- "Systems medicine is finally coming of age" (Lemberger, 2007)
- Network as the target (Pawson and Linding, 2008)
- "Think globally, act locally" (Barabasi, Loscalzo, 2011)
- Nowadays considered as a resource for
 - biomarker discovery
 - drug target prediction
 - drug side-effect analysis
 - drug repurposing
 - suggesting
 new therapies
 - patient-stratification



Molecular interaction networks

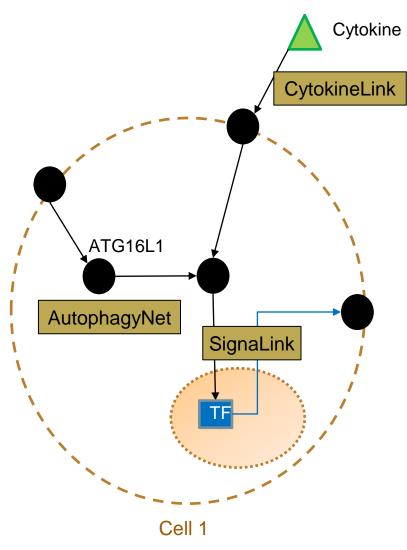




Disease Models & Mechanisms

Integrative analysis of Paneth cell proteomic and transcriptomic data from intestinal organoids reveals functional processes dependent on autophagy

Emily J. Jones^{1,2,3,*}, Zoe J. Matthews^{3,*}, Lejla Gul^{1,*}, Padhmanand Sudhakar^{1,2}, Agatha Treveil^{1,2}, Devina Divekar^{2,3}, Jasmine Buck³, Tomasz Wrzesinski¹, Matthew Jefferson³, Stuart D. Armstrong⁴, Lindsay J. Hall², Alastair J. M. Watson^{2,3}, Simon R. Carding^{2,3}, Wilfried Haerty¹, Federica Di Palma¹, Ulrike Mayer⁵, Penny P. Powell³, Isabelle Hautefort¹, Tom Wileman^{2,3} and Tamas Korcsmaros^{1,2,‡}


RESEARCH ARTICLE

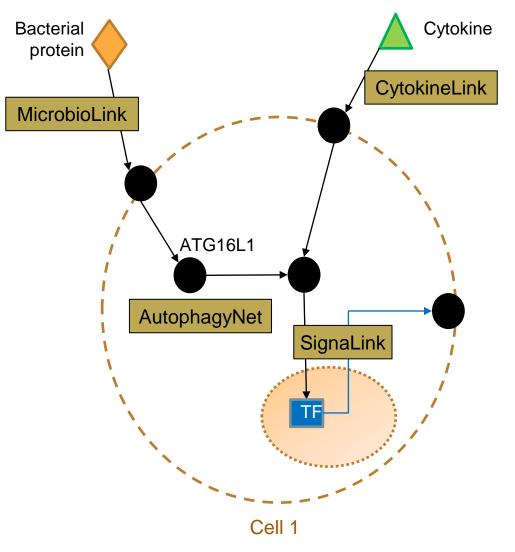
Disease Models & Mechanisms

Integrative analysis of Paneth cell proteomic and transcriptomic data from intestinal organoids reveals functional processes dependent on autophagy

Emily J. Jones^{1,2,3,*}, Zoe J. Matthews^{3,*}, Lejla Gul^{1,*}, Padhmanand Sudhakar^{1,2}, Agatha Treveil^{1,2}, Devina Divekar^{2,3}, Jasmine Buck³, Tomasz Wrzesinski¹, Matthew Jefferson³, Stuart D. Armstrong⁴, Lindsay J. Hall², Alastair J. M. Watson^{2,3}, Simon R. Carding^{2,3}, Wilfried Haerty¹, Federica Di Palma¹, Ulrike Mayer⁵, Penny P. Powell³, Isabelle Hautefort¹, Tom Wileman^{2,3} and Tamas Korcsmaros^{1,2,‡}

Molecular Omics		CONTRACTOR OF CHEMISTRY
RESEARCH ART	ICLE	View Article Online View Journal
Check for updates	Regulatory network analysis of Par and goblet cell enriched gut organ transcriptomics approaches†	
	A. Treveil, ⁽⁰⁾ ‡ ^{ab} P. Sudhakar,‡ ^{ac} Z. J. Matthews,‡ ^d T. Wrze J. Brooks, ^{abde} M. Ölbei, ^{ab} I. Hautefort, ^a L. J. Hall, ^b S. R. Ca P. P. Powell, ^d T. Wileman, ^{bd} F. Di Palma, ^a W. Haerty* ^a and	arding, ^{bd} U. Mayer, ^f

RESEARCH ARTICLE



Integrative analysis of Paneth cell proteomic and transcriptomic data from intestinal organoids reveals functional processes dependent on autophagy

Emily J. Jones^{1,2,3,*}, Zoe J. Matthews^{3,*}, Lejla Gul^{1,*}, Padhmanand Sudhakar^{1,2}, Agatha Treveil^{1,2}, Devina Divekar^{2,3}, Jasmine Buck³, Tomasz Wrzesinski¹, Matthew Jefferson³, Stuart D. Armstrong⁴, Lindsay J. Hall², Alastair J. M. Watson^{2,3}, Simon R. Carding^{2,3}, Wilfried Haerty¹, Federica Di Palma¹, Ulrike Mayer⁵, Penny P. Powell³, Isabelle Hautefort¹, Tom Wileman^{2,3} and Tamas Korcsmaros^{1,2,‡}

Molecular Omics		COVAL SOCIET
RESEARCH ART	ICLE	View Article Online View Journal
Check for updates	Regulatory network analysis of Par and goblet cell enriched gut organ transcriptomics approaches†	
	A. Treveil, ⁽¹⁾ ‡ ^{ab} P. Sudhakar,‡ ^{ac} Z. J. Matthews,‡ ^d T. Wrze J. Brooks, ^{abde} M. Ölbei, ^{ab} I. Hautefort, ^a L. J. Hall, ^b S. R. Ca P. P. Powell, ^d T. Wileman, ^{bd} F. Di Palma, ^a W. Haerty* ^a and	arding, ^{bd} U. Mayer, ^f
	neak Peek Cell Re	ports

Cytokine Responsive Networks in Human Colonic Epithelial Organoids Unveil a Novel Molecular Stratification of Inflammatory Bowel Disease

RESEARCH ARTICLE

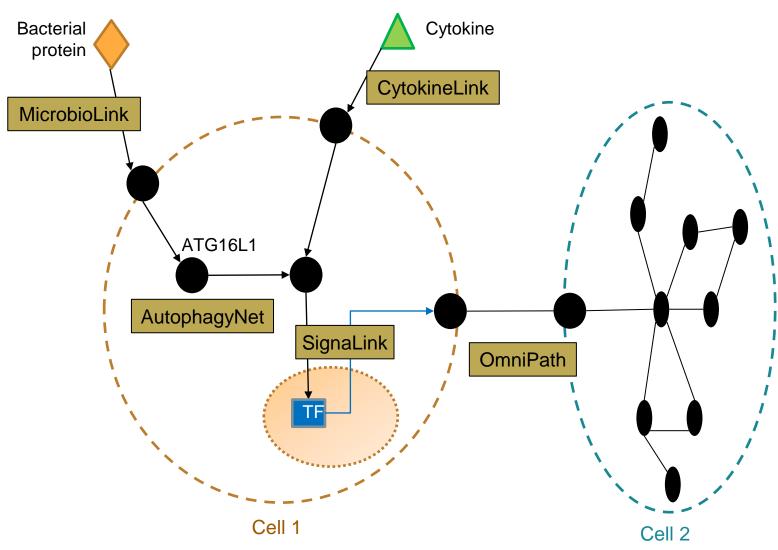
Disease Models & Mechanisms

Integrative analysis of Paneth cell proteomic and transcriptomic data from intestinal organoids reveals functional processes dependent on autophagy

Emily J. Jones^{1,2,3,*}, Zoe J. Matthews^{3,*}, Lejla Gul^{1,*}, Padhmanand Sudhakar^{1,2}, Agatha Treveil^{1,2}, Devina Divekar^{2,3}, Jasmine Buck³, Tomasz Wrzesinski¹, Matthew Jefferson³, Stuart D. Armstrong⁴, Lindsay J. Hall², Alastair J. M. Watson^{2,3}, Simon R. Carding^{2,3}, Wilfried Haerty¹, Federica Di Palma¹, Ulrike Mayer⁵, Penny P. Powell³, Isabelle Hautefort¹, Tom Wileman^{2,3} and Tamas Korcsmaros^{1,2,‡}

Molecular Omics		CONTRACTOR SOCIET
RESEARCH ART	ICLE	View Article Online View Journal
Cite this: DOI: 10.1039/c9mo00130a	Regulatory network analysis of Pa and goblet cell enriched gut organ transcriptomics approaches†	
	A. Treveil, ⁽ⁱ⁾ ‡ ^{ab} P. Sudhakar,‡ ^{ac} Z. J. Matthews,‡ ^d T. Wrzr J. Brooks, ^{abde} M. Ölbei, ^{ab} I. Hautefort, ^a L. J. Hall, ^b S. R. C. P. P. Powell, ^d T. Wileman, ^{bd} F. Di Palma, ^a W. Haerty* ^a and	arding, ^{bd} U. Mayer, ^f
	REVIEW OF PAPERS UNDER REVIEW	ports

Cytokine Responsive Networks in Human Colonic Epithelial Organoids Unveil a Novel Molecular Stratification of Inflammatory Bowel Disease


iScience

CellPress OPEN ACCESS

Article

Integrated analysis of microbe-host interactions in Crohn's disease reveals potential mechanisms of microbial proteins on host gene expression

Padhmanand Sudhakar,^{1,4,*} Tahila Andrighetti,² Sare Verstockt,¹ Clara Caenepeel,^{1,3} Marc Ferrante,^{1,3} João Sabino,^{1,3} Bram Verstockt,^{1,3} and Severine Vermeire^{1,3}

RESEARCH ARTICLE

Disease Models & Mechanisms

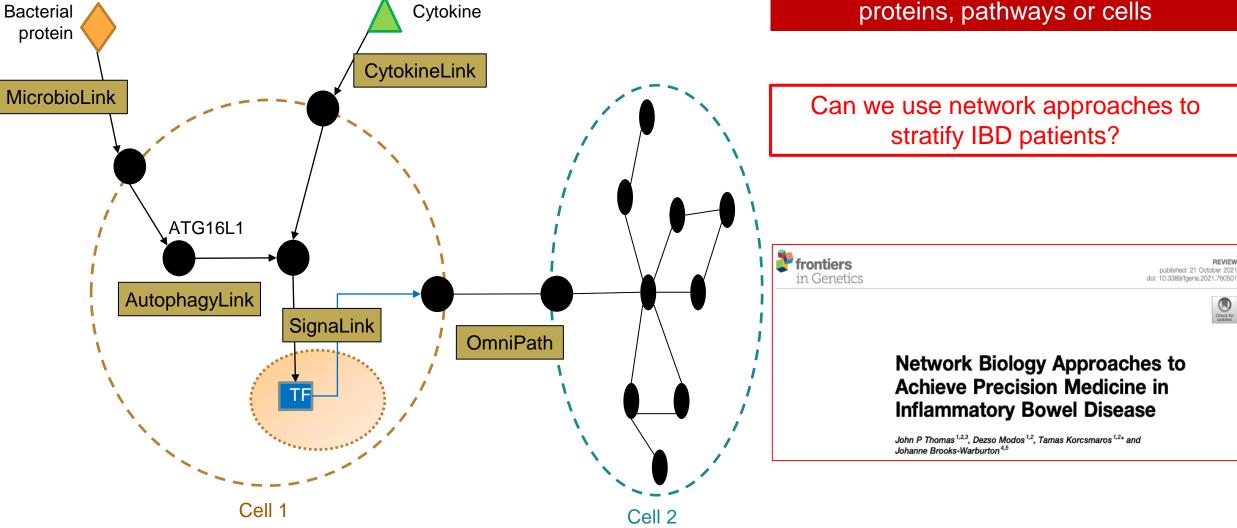
Integrative analysis of Paneth cell proteomic and transcriptomic data from intestinal organoids reveals functional processes dependent on autophagy

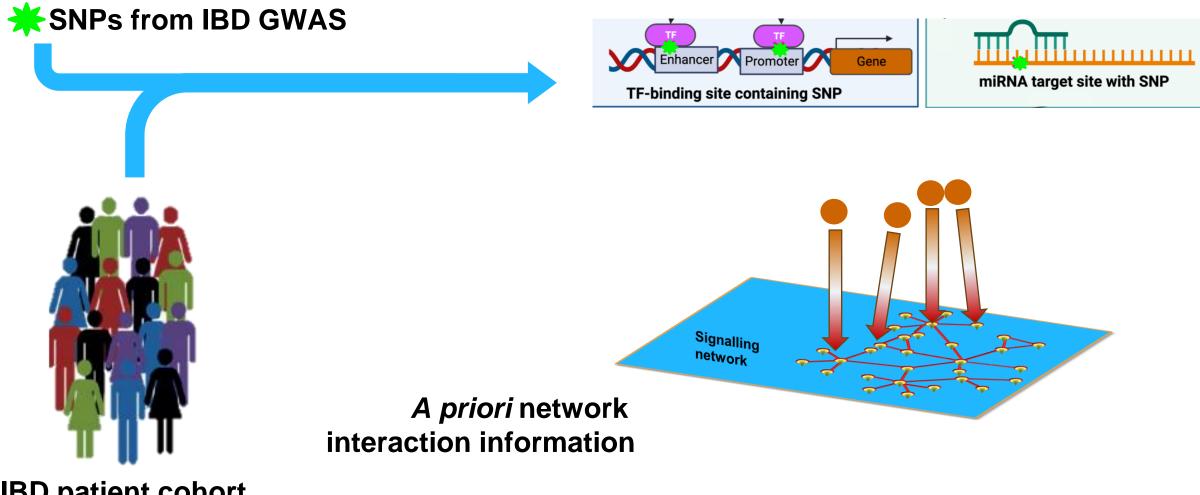
Emily J. Jones^{1,2,3,*}, Zoe J. Matthews^{3,*}, Lejla Gul^{1,*}, Padhmanand Sudhakar^{1,2}, Agatha Treveil^{1,2}, Devina Divekar^{2,3}, Jasmine Buck³, Tomasz Wrzesinski¹, Matthew Jefferson³, Stuart D. Armstrong⁴, Lindsay J. Hall², Alastair J. M. Watson^{2,3}, Simon R. Carding^{2,3}, Wilfried Haerty¹, Federica Di Palma¹, Ulrike Mayer⁵, Penny P. Powell³, Isabelle Hautefort¹, Tom Wileman^{2,3} and Tamas Korcsmaros^{1,2,‡}

Molecular Omics		CONTROL SOCIET
RESEARCH AR	TICLE	View Article Online View Journal
Check for updates	Regulatory network analysis of and goblet cell enriched gut or transcriptomics approaches†	
	A. Treveil, [©] ‡ ^{ab} P. Sudhakar,‡ ^{ac} Z. J. Matthews,‡ ^d T J. Brooks, ^{abde} M. Ölbei, ^{ab} I. Hautefort, ^a L. J. Hall, ^b S P. P. Powell, ^d T. Wileman, ^{bd} F. Di Palma, ^a W. Haerty	. R. Carding, ^{bd} U. Mayer, ^f
CellPress	Sneak Peek Cell R	eports
1	esponsive Networks in Hur	

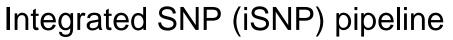
Epithelial Organoids Unveil a Novel Molecular Stratification of Inflammatory Bowel Disease

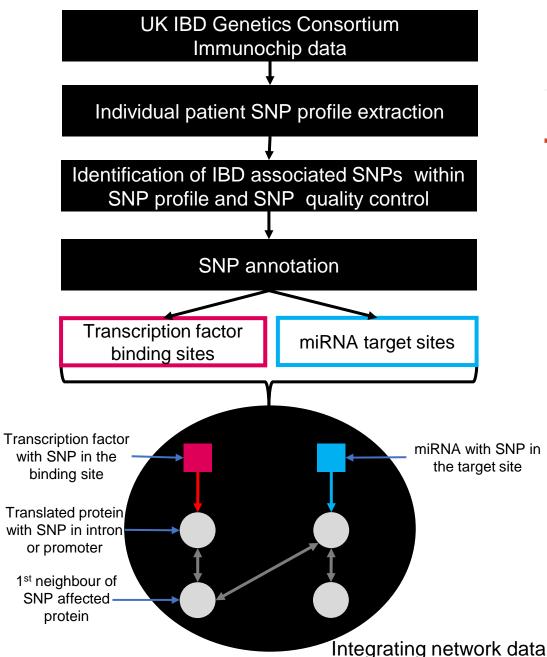
iScience


CellPress OPEN ACCESS


Article

Integrated analysis of microbe-host interactions in Crohn's disease reveals potential mechanisms of microbial proteins on host gene expression


Padhmanand Sudhakar,^{1,4,*} Tahila Andrighetti,² Sare Verstockt,¹ Clara Caenepeel,^{1,3} Marc Ferrante,^{1,3} João Sabino,^{1,3} Bram Verstockt,^{1,3} and Severine Vermeire^{1,3}

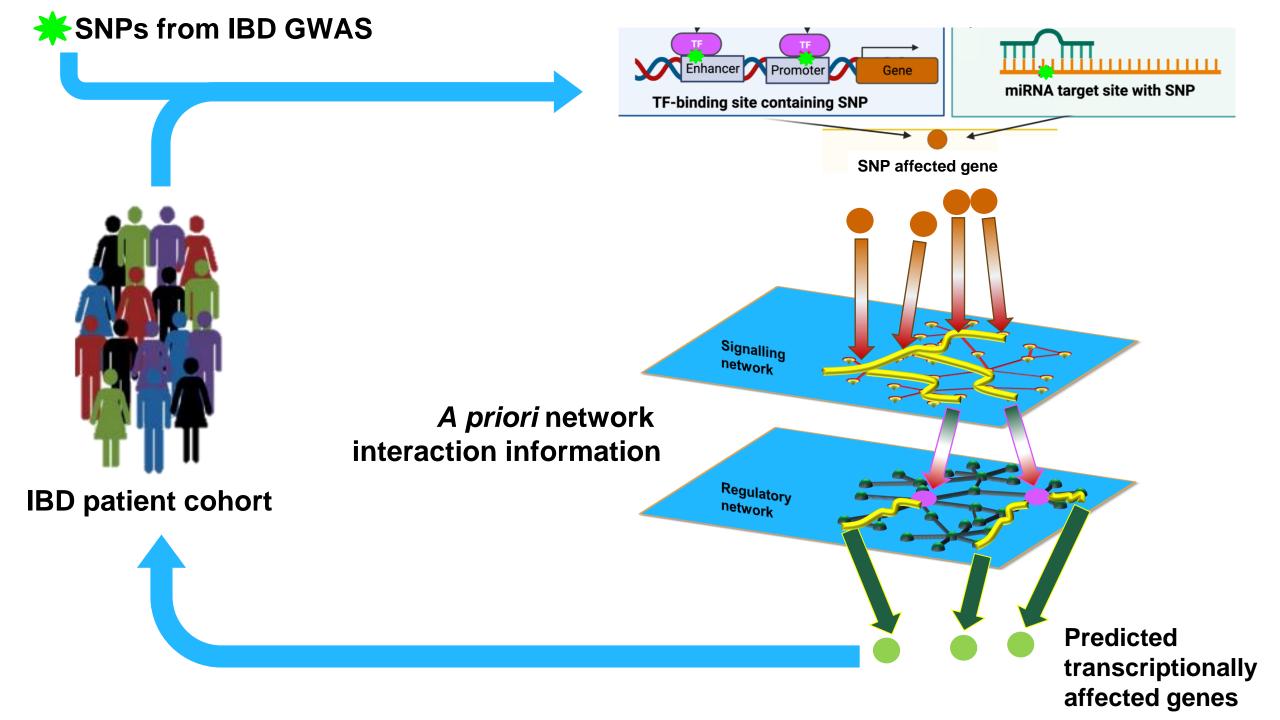

IBD patients have various sets of SNPs affecting different or overlapping sets of proteins, pathways or cells

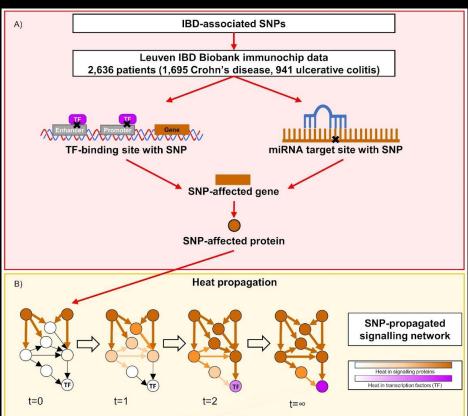
IBD patient cohort

Brooks et al, *Nature Communications, 2022* Korcsmaros *et al, PCT patent application, 2019*

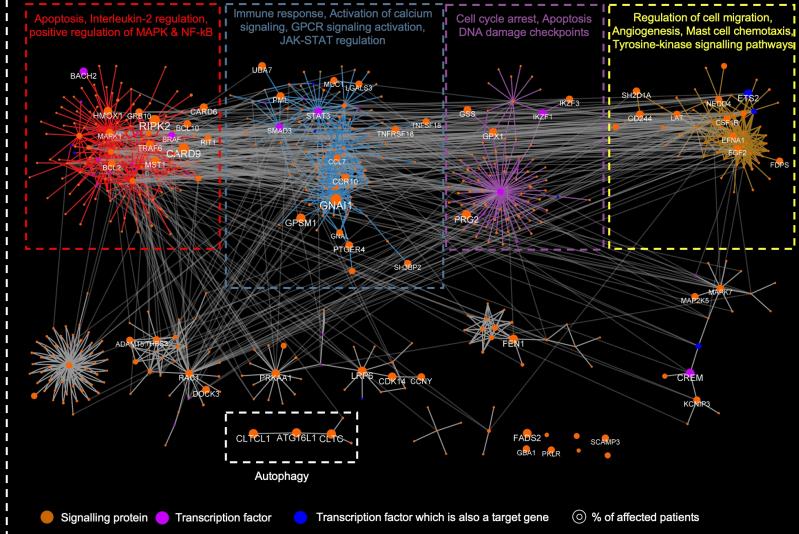
nature communications

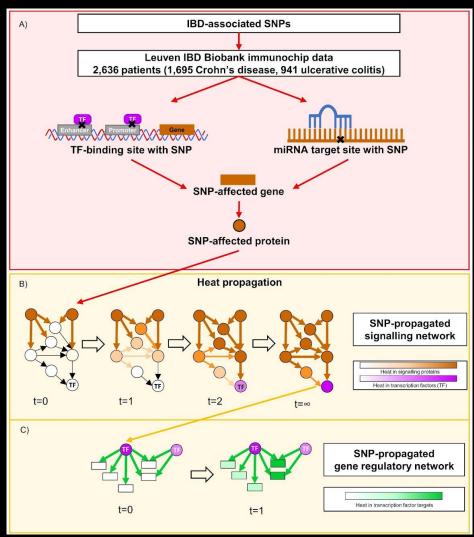
Explore content \checkmark About the journal \checkmark Publish with us \checkmark

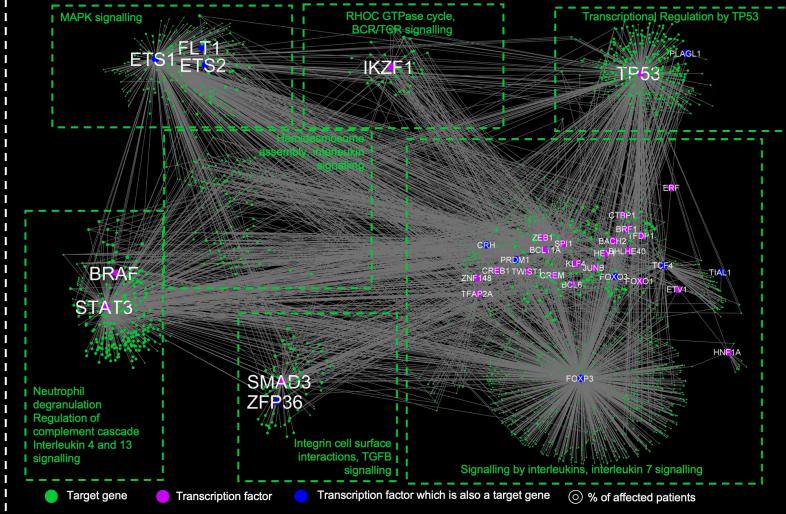

nature > nature communications > articles > article

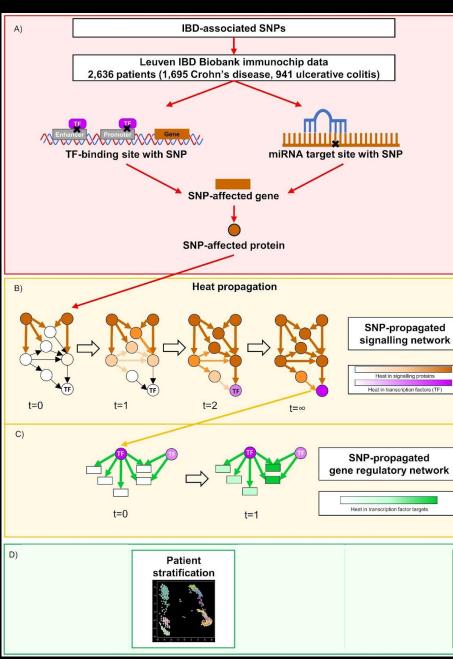

Article Open access Published: 28 April 2022

A systems genomics approach to uncover patientspecific pathogenic pathways and proteins in ulcerative colitis


Johanne Brooks-Warburton, Dezso Modos, Padhmanand Sudhakar, Matthew Madgwick, John P. Thomas, Balazs Bohar, David Fazekas, Azedine Zoufir, Orsolya Kapuy, Mate Szalay-Beko, Bram Verstockt, Lindsay J. Hall, Alastair Watson, Mark Tremelling, Miles Parkes, Severine Vermeire, Andreas Bender, Simon R. Carding 🖾 & Tamas Korcsmaros 🖾


Nature Communications 13, Article number: 2299 (2022) Cite this article




Impact of CD non-coding SNPs on signalling Convergence on cell cycle and apoptosis

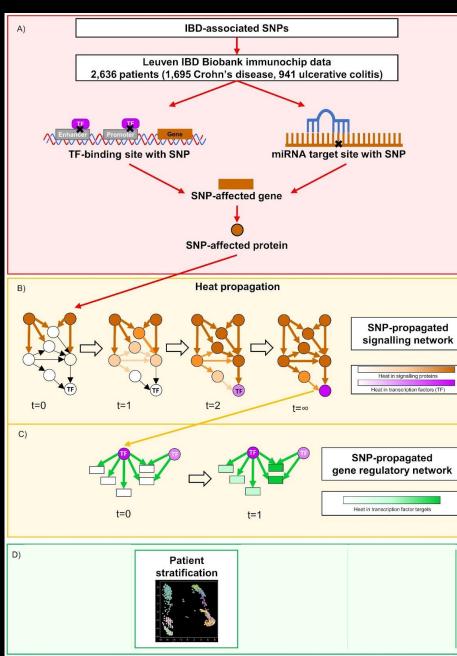
Impact of CD non-coding SNPs on gene regulation Convergence on key transcription factors

SNP-propagated gene regulatory networks capture disease heterogeneity in CD

Patient cluste

Number of

patients


Main

transcription

factors

ər	1	2	3	4	5	6		7		8		9	10)	11		12				
	119	60 376 333		9 60 376 33		9 <mark>60 376</mark> 33		333	106	4	43	142	2	124		37	11(6	101	1	138
1	ets1, ets2, ftl1	STAT3, ETS1, ETS2, FLT1	Various TFs, low number of targets	TP53	STAT3	TAT3 STA TF		Vario TFs hig numb of targe	s, h S per	TAT3, P53	AT3,T P53 ST		STA IKZI	io, s =₁ S	STATS MADS ZFP36	3, SM	атз, IADЗ, -РЗ6				
					Patient cluster	1	2	3	4	5	6	7	8	9	10	11	12				
					Number of patients	119	60	376	333	106	43	142	124	37	116	101	138				
					ETS1																
	•				ETS2																
	••	•			FLT1																
	•	•			STAT3																
					TP53																
-4 C1	–2 of Jaccard	0 2 simmilarity	4 6 matrix	8	IKZF1																
					SMAD3																
					ZFP36																

SNP-propagated GRNs capture disease heterogeneity in CD

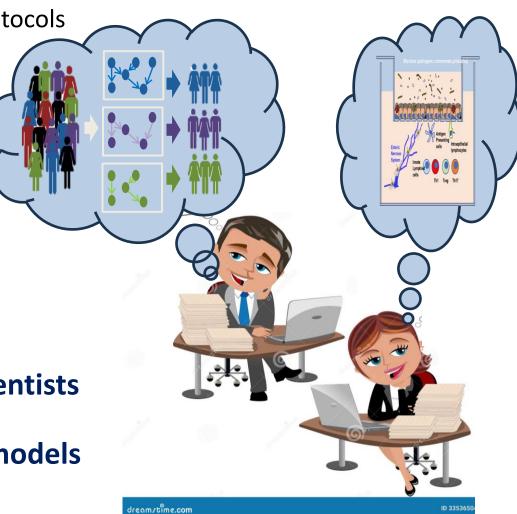
Pa	atient cluster	1	2	3	4	5	6	7	8	9	10	11	12		
	Number of patients	119	60	376	333	106	43	142	124	37	116	101	138		
	Main ranscription factors	ETS1, ETS2, FTL1	STAT3, ETS1, ETS2, FLT1	Various TFs, low number of targets	TP53	STAT3	STAT3, TP53	Various TFs, high number of targets	STAT3,T P53	STAT3	STAT3, IKZF1		STAT3, , SMAD3, ZFP36		
I I I ETS1/E															
1			2				3			•	4				
5			6				7				B				
9			10				11				12				
I STAT3													SMA		

Genotype-driven patient clusters correspond to cell type-specific gene dysregulation in CD

er ients	tion							lleum							Colon												
Patient cluster Number of patients	Main transcription factors	Tregs	Naïve T cells	CD4 FOSB T cells	IELS	B cells	Macrophages	DC1	DC2	Mast cells	Fibroblasts	Paneth cell	Enterocyte	Stem cells	Treg	Naïve CD4	CD8 T cells	CD17	CD4 FOSB	NK like	DC2	Goblet cells	Myofibroblasts	Inflammatory fibroblasts	Fibroblasts	LTC4S endothelial cells	Glial cells
1 119	ETS1, ETS2, FTL1																										
	STAT3, ETS1, ETS2, FLT1																										
3 376 lo	Various TFs, ow number of targets																										
4 333	TP53																										
5 106	STAT3																										
	STAT3, TP53																										
7 142 h	/arious TFs, igh number of targets																										
8 124 \$	STAT3,TP53																										
9 37	STAT3																										
10 116 S	STAT3, IKZF1																										
11 101	STAT3, SMAD3, ZFP36																										
12 138	STAT3, SMAD3, ZFP36																										

Summary and next steps

- Many IBD-associated SNPs have regulatory effects
- The SNP-set (SNP co-occurrence) is more relevant marker than a single SNP
- Including downstream potentially effected processes increases the opportunity to stratify patients
- Aggregated data, randomised trials could miss key signals in complex diseases
- To assess the power of iSNP and other network approaches the combination of omics data and clinical metadata is necessary
- Patient-type specific changes in host-microbe interactions?



Network Medicine in IBD – what is needed from hype to success

• Higher complexity datasets

- Multi-omics based on IBD definition (genetics, immunology, exposome/microbiome)
- Each collected from the same patient, with standardised protocols
- With associated clinical metadata
- Higher resolution datasets
 - Single-cell data (more patients, larger sequencing depth)
 - Strain level metagenomics
 - Spatial and time-course data
 - Functional omics (proteomics, metabolomics)
- Training and community between tool developers / data analysts, academic and clinical scientists
- Human organoid based, complex IBD experimental models for hypothesis generation and validation

Acknowledgements

Korcsmaros group

- Isabelle Hautefort
- Marton Olbei
- Leila Gul
- Balazs Bohar
- John P. Thomas
- Yufan Liu
- Luca Csabai
- Deema Alassaf
- Polina Kornilova
- Tanvi Tambaku
- Yiran Zhang
- Cynthia Qiu
- Yik Jin Voon
- Jiyoon Choi
- Mira Mazsa

Alumni (2014-2023)

- Dezso Modos
- Matthew Madgwick
- Martina Poletti
- Jo Brooks
- Amanda Demeter
- Agatha Treveil
- Padhmanand Sudhakar
- Emily Jones
- Denes Turei
- Tamas Kadlecsik
- David Fazekas
- Mate Szalay-Beko
- Wen-Xin Kang
- Georgina Alabone
- Tahila Andrighetti
- Zoltan Dul

Imperial College London

Biotechnology and Biological Sciences Research Council

Medical Research Council

Decoding Living Systems

PINITER Imperial Biomedical Research Centre

Acknowledgements

Aimee Parker, Regis Stentz, Federica Di Palma, Simon Carding, Neil Hall, Jozsef Baranyi, Rob Kingsley, Tom Wileman, Lindsay Hall, Stephen Robinson, Simon Rushbrook, Rob Davey, Iain Macaulay, Wilfried Haerty, Falk Hildebrand, Cynthia Whitchurch

Séverine Vermeire Marc Ferrante Bram Verstockt Kaline Arnout

UK IBD GENETICS CONSORTIUM Understanding the genetics of Crohn's & Colitis

Miles Parkes Carl Anderson

Dana Philpott Mark Silverberg Sun-Ho Lee

Gavin Bewick Chronis Pavlidis Joana Neves

wick Pavlidis eves

Diana Papp Sandra Koigi Tamir Rashid

Imperial College London

Imperial Biomedical

Research Centre

Nick Powell and the Powell lab Gary Frost David Ma

Irene Miguel-Aliaga Vivian Li

> UNIVERSITÉ DU LUXEMBOURG Paul Wilmes

Institut Pasteur Jost Enninga

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386 Julio Saez-Rodriguez Denes Turei WARWICK THE UNIVERSITY OF WARWICK Ioannis Nezis

Thank you!

https://github.com/KorcsmarosGroup/

http://KorcsmarosLab.org

T.Korcsmaros@imperial.ac.uk